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DIGITAL FILTER DESIGN TECHNIQUE AND THE REALIZATION OF TRANSFER
AND IMMITTANCE FUNCTIONS BY USING DIGITAL ELEMENTS

By Chia-Peir Yu

ABSTRACT

Realization of two kinds of network functions by using digital
elements are presented; these are (1) transfer functions, including the
design of digital filters and spectrum analyzers where the real time
implementation is made possible by using high speed, small size, inte-
grated digital building blocks. Methods of digital integration are
discussed whereby a configuration of the digital integrator is proposed
as the basic digital element for real time device implementation. (2)
Driving point impedance and admittance functions are also realizable by
using digital elements provided that analog-to-digital and digital-to-
analog converters are available. If both converters can be made avail-
able in integrated circuit form, then any analog components, either a
single element or a combination of single elements, existing in the
state of the art can be realized on a chip with digital elements. In
this paper, all the synthesizing works are carried out by using Laplace
transformation, except in the section where the time varying coefficients

transfer function is discussed.
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Chapter I
INTRODUCTION

Many reports in the area of designing the real time digital filters
have recently been published [4,5,8]. Their basic principles are that
the analog input signal undergoes the process of spectrum shaping, then
feeds through digital hardware in which a general purpose computer is
utilized to perform operations such as delay, storage, addition, sub-
traction, and multiplication in a way to satisfy a set of specified dif-
ference equations between input and output. In other words, the digital
output of the computer, after a set of calculations, and the digital
input to the computer satisfy a specified transfer function in z-transform.
The transfer function in z-transform can be obtained by direct transforma-
tion from Laplace transform. From the transfer function, a set of differ-
ence equations can be found and can be executed on the digital computer;
the data output of the computer can be collected as the final output, then
the transfer function of a digital filter is realized. This technique of
filtering by implementation of difference equations is sometimes referred

to as '"recursive filtering,"

if the present value of the output depends
not only on the present and past values of the input but also on the pre-
vious values of the output; or 'nonrecursive filtering," if the present
value of the output does not depend on the previous values of the output
(4],

This paper discusses two topics: (1) transfer function realization
and (2) driving point function realization using digital elements. The
former concerns digital filter design technique. The latter concerns the
individual component realization and the complicated network realization.
The philosophy and approach discussed are different from those mentioned
above. Essentially what we want is to construct small-size real time
digital filters and other real time components by using digital building
blocks as substitutes for analog components; these were made possible due
to increasing speeds and decreasing cost of microelectronic digital cir-

cuitry. We use a digital integrator (a device containing digital building
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blocks such as registers, adders, and logic gates which perform digital
integration) as the basic building block for the realization of the trans-
fer and driving point functions, Therefore, the mathematical models are
differential equations rather than difference equations. Though the
Laplace transformation was used to specify the transfer and driving point
functions, the outputs were not precisely the same as those outputs speci-
fied by the transformation, However, they are essentially a very good
approximation to the specified function and they are compatible with the
continuous (analog) type of network,

As far as the digital filters are concerned, their input and output
are not discrete, but are piecewisely continuous increments, Digital
increments are the only data transferred between the digital integrators
inside the digital filter. By this means, much shorter time is needed as
compared to transferring of the full word. If only an analog signal is
available at the input, a device called Analog to Digital Increment Con-
verter (ADIC) can be used. More will be said concerning ADIC in Appendix
D. Digital increments and up to date quantized output are both available
at the output of the digital filters. The digital filters designed in
this fashion definitely have an advantage over the analog filters because
of their small size, accuracy, stability, and real time controllability.
They also have a definite advantage over the sample-data digital filters
because of their small size, compactness, fast speed, and shorter delay
time.

For the driving point functions realization, if analog-to-digital
increment (ADIC) and digital-to-analog (DAC) converters are available,
then all the driving point functions can be realized by using digital
elements only. It is also hoped that at some future time, ADIC and DAC
can both be integrated, at which time all the driving point functions can
be integrated without difficulty, by the method discussed in Chapter V.
High Q inductors or high capacity capacitors can then be made available.

The method has additional advantages: (1) the realization of negative
elements is as easy as positive elements; (2) the accuracy of the component
value can be improved by increasing the length of the registers; and (3)
the size of the network realized can be made very small and it is, in fact,

independent of the frequency, provided that the frequency is not too high.
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Chapter II
DIGITAL INTEGRATOR

1. Principles of Digital Integration

Digital integrators employ an approximate representation of the
integral of a function as the sum of the areas of elementary rectangles,
each of which corresponds to a definite increment Ax of the independent
variable =x.

Suppose that we are required to find the integral of a given function
y = f(x). This integral represents the area bounded by the curve y = f(x)
and the abscissa, but the integral may be approximated as the sum of the
areas of the elementary rectangles. The height of each of the rectangles
is the current ordinate y and the base is the increment Ax of the
independent variable x; each increment is obtained by dividing the entire
range of change in variable x into equal increments. As shown in Fig. 1,

the integral 2z is found to be

i=n i=n

x
z = fydx= limit ZyiAxi+Ro= z ' Axi+Ro (2.1)
X n > <«
o i=1 i=1
where y = f(x)
and
Axi =X 7% (2.2)

is the increment of independent variable x.

If we make Axi = 1, then
i=n
Z = Z yi + RO (2.3)
i=1

where Ro is the initial value of the integral.
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Thus to compute the integral, it is sufficient to add all the ordi-
nates corresponding to each of the elementary rectangles. Consequently,
the integration process reduces to a summation of the members representing
the ordinates. Each ordinate is equal to the preceding ordinate plus (or
minus) the ordinate increment Ayi for the interval Axi = X 7% Hence
the value of ordinate y; may be computed by adding to each preceding

ordinate the increment Ay. For example,

Y17 % + Ay1

yp =V Ay,

Vo = Vo1 + Yy = Y, + Ayl + Ayz + ...+ Ayn (2.4)
Hence it is seen that the current value of the ordinate y; may be obtained

by accumulating all increments of the ordinate up to the increment Ayi.

(This integration method is called Triangular Integration.)

y
y =f(x)
ij _______ z=R°ty
iX 3\\ R, OUK?TZ‘ 44{4
HEEEEEEE . EEEE
Xg = lwax; X 5 Ax
Az
5
Zay

%L{—Ux E—{TTTTTTT]
| 2

Fig. 1 BLOCK DIAGRAM OF DIGITAL INTEGRATOR
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2. Operation of the Digital Integrator

Referring to Fig. 1, assume that increments Ax, Ay, and Az are
given in the form of individual pulses. The reversible counter 1 counts
the incoming pulses. For each integration step, the counter accepts
pulses from several input channels, and the number of pulses accumulated
by the counter is regarded as an increment of the integrand, where the
increment is the sum of several elementary increments, i.e., ZAy.

For each integration step, the number XAy stored in counter 1 is
summed with the number Y, stored in register 2 (y register) by means
of the Zl adder. As a result of addition (or subtraction), a new ordi-
nate y = inZAy is obtained for each integration step.

During each integration step, the number y stored in register 2 is
added to register 3 (R register) wherein the number corresponding to the
sum of the ordinates (i.e., the value of the integral) is stored. Summa-

tion of numbers y and Ro is achieved by the X adder,

2

where RO is the number of the integral initially stored in register 3.
Summation is performed each time the input Ax of the integrator receives
a pulse representing an increment of the independent variable x.

Let v be the contents of the y register when the i-th Ax pulse
occurs. If the R register has sufficient capacity, after the n-th Ax

pulse it will contain the sum

which is an approximation of
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where
n
X = zz Ax,
n i
i=1

However, if the R register has the same length (or less) as the y register
and register 4 (termed the Az register) is appended to the R register, the
Az register will be used to store the carriers generated in the R register.

Hence during summation the R register may overflow and we have

bz; + R, = R, +y, bx; (2.5)

where Ri is the number in the R register after the i-th Ax pulse has

added vy to the R register. Therefore,

n n
z bz, = z y, bx, * R - R (2.6)
i-1 i=1

and the sum of the Azi binary bits is an approximation to

n
5 vy %y
i=1

with a round-off error RO—Rn. Therefore the device is an approximate
integrator. Register 3 and register 4 may be regarded as two parts of a
single register having 2n bits. Register 3 holds the less significant
bits of integral =z, and register 4 holds the most significant bits lo-
cated at (n+l) to 2n bit positions. 1In such an arrangement, integral
z has at the most twice as many bits as the integrand register 2.

The process of accumulating the overflow pulses Az from the inte-

grator output by register 4 is an integration process, as already shown.
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In general, the integral increment Az is

Az = k y Ax 2.7

where k 1is a constant scale factor. For binary numbers

i
o0

k = (2.8)

and n 1is the number of bits of register y or z, where R0 denotes the
number in register 3.

The coefficient k 1is the scale factor of the digital integrator.
It signifies that, for y =1 and Ax = 1, 2" summations (or 2" steps)
are required to obtain one overflow pulse Az at the output of register

3. If y 1is equal to 2" and Ax = 1, then there will be an overflow
pulse for each of the integration steps.
Converting from increments Ax, Ay, and Az to derivatives of

X, y, and z in time, the formula Az = k yAx can be written as

follows

dz _ dx [ [dy
T k( dt) (2.9

or in the form of an integral

z=kfy dx (2.10)

3. Trapezoidal Integration

The error in rectangular integration (as in section 1) can be reduced
by using the trapezoidal rule such that the curve y = f(x) at each inter-
val Ax 1is approximated by a chord. This rule is equivalent to a summation
of the areas of "mean" rectangles; as shown in Fig. 2, each rectangle has

a mean ordinate approximated by

1
otz B
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The increment of the integral (the area of an elementary rectangle) 1is

Az = <y+%Ay> hx (2.11)
y y
]
7‘
//””””' —
yz
y
T
Yo
X -'— b 3
xo,*A‘,* X_ X, Xm

Fig. 2 TRAPEZOIDAL INTEGRATION

If the trapezoidal integration method is employed, the integral is

approximated by

X X - X y +vy vy, +vy y__ + vy
n F(x) dx = n 0 o) 1 + 1 2 + ... 4D 1 n
) n 2 2 2
X=X
o
X - X y +vy
n 0 0o n
= = < > ty, by, e +yn_l> (2.12)

Similar accuracy in integration may be obtained by summing the areas

of rectangles having at each interval a mean ordinate (refer to Fig. 3) of
R (2.13)
m 2

where y 1is the value of the current ordinate and Ay 1is the ordinate

increment for the given interval.
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The approximate value of the interval will then be

X - x
n n o
y dx = 5 (yml + Y2 + ... + ymn) (2.14)
X=X
y y=£(x)
—>7= 1y,
rA~ 1Y,
[~ —18Y,
e ||
Y2 Ym3
I y sz
Yt ' I
yol 1™ | ]
Xg % Xg %4

Fig. 3 INTEGRATION BY THE ''MEAN'" RECTANGLE METHOD

Integration by using Eq. (2.14), which approximates the accuracy of
the trapezoidal formula, consists of three summing operations:
a. The next ordinate value y* 1is determined by adding the

increment Ay at the integrator output, i.e.,

Y1 * Ay2 = yﬁ, etc. (2.15)

b. Half of the ordinate increment is added to the initial wvalue

of the ordinate, i.e.,

Ayl

+ *
Yo = 72 Y m1
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Ay2
— L = g%k
Y1 ¥ T T Y

Ay3
y2 + 5 = yr’;3, etc, (2.16)
C. The resulting mean ordinate values are summed in the accumu-

lator (R register). The sum of the mean ordinate values is

taken as the approximate value of the integral
~ y* * * ‘e # .
R v + yE, + yEa + + yén (2.17)

provided that Ax = 1.

Note: the trapezoidal method is significant only where other errors
(such as round-off error) are sufficiently small [6]. Hence the ternary
method of representing increments Ax, Ay, and Az 1is necessary.

The block diagram for integration by the mean-rectangle method is

shown in Fig. 4.

*
iy REGISTER R REGISTER

y R R*
r-Y —
Ya Say Sum=ytZay=y* v
ay, > 3, — 3,
i CARRY CARRY
Ayc —
UNIT DELAY UNIT DELAY
Za sum=ytZ2=y® [ DRECT OR
L z, COMPLEMENT|
JCARRY CODE
A -
UNIT DELAY X+ ax
W
ax,  Ax_

Fig. 4 BLOCK DIAGRAM OF THE INTEGRATION BY THE MEAN~RECTANGLE METHOD
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4. Solution of Differential Equations by Using Digital Integrators

Functionally, a digital integrator is represented by a schematic, as
shown in Fig. 5, where arrows indicate the direction of data flow. The
inputs dx and dy are incremental inputs and dx can be either an
incremental time input dt (say clock pulses), or even a function of .

The output dz observes the relations
dz = y dx

or (2.18)

z =U/ﬁy dx

Sometimes, more than one digital integrator is used to solve a cer-
tain problem, in which case they can be connected in such a way that the
overflow of one integrator is connected to the input of the other inte-
grator. From time to time, the scalar multiplication is also required;
in that event, an integrator can also be used. The dy dinput terminal
is left open and the content of the y register is set to a desired con-
stant k, then dz = k dx. In other words, the output dz 1is equal to

k times the dx input (see Fig. 6).

dz=ydx

Fig. 5 FUNCTIONAL SCHEMATIC OF A DIGITAL INTEGRATOR

dx

dz= kdx

Fig. 6 SCHEMATIC OF A CONSTANT MULTIPLIER
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A set of digital integrators can be used to solve an ordinary differ-
ential equation of any order or degree, linear or nonlinear, or even a
simultaneous set of such equations. Normally, for solving a differential
equation, two steps--mapping and scaling--are involved. Mapping consists
in specifying how the operational units (integrators and adders) should
be interconnected so that the variable or variables of interest are gener-
ated within the system. Since a digital integrator has a limited capacitv
of registers, it is necessary to assure that intermediate results stay
within the specified ranges during the running of a problem, so that the
estimated maximum values of each of the variables can be scaled to a
meaningful range. This is amplitude scaling. Sometimes, frequency scaling
is also employed to ensure proper operation. For a real time device, the
amplitude and frequency of the input have to be specified in a workable
range; therefore no frequency scaling is permissible. But if amplitude
scaling is necessary, it can be done either by adjusting the ratio of the
analog-to-digital converter, or the digital-to-analog converter, or by
using a multiplier to restore the scale factor.

Example 1: Solve the following differential equation:

2
dy & _ sin y = 0
dtz dt

Solution: Differentiating the given differential equation once,

we get

dy = dy + d(sin y)

The solution y can be obtained by interconnecting the digital
integrators, as shown in Fig. 7, where the independent variable input is
dt. The initial conditions of y(0), v(0), and y(0) have not been
taken into consideration. They can be treated by adding one extra register,
called T register, to store the initial condition for each integrator. The
data transfer from I register to y register will be done at the beginning
of the operation cycle.

Similarly, nonlinear differential equations can be solved without
difficulty.
SEL-67-085 12



T ea
. N | ydtedy > by REGISTER
y & ,
ydtdy
! B ..
dy y-y-siny=0

" - dy=dy +d(siny)

Fig. 7 CONNECTIONS FOR SOLUTION OF ¥ -y - siny = 0
Example 2: Solve the following nonlinear differential equation
50 - y(£) 3(&) + y(t)? = 0
Solution: Differentiating the given equation once, we have
dy = ydy + ydy - 2ydy
The solution can be obtained by interconnecting digital integrators, as

those shown in Fig. 8. For simplicity, the multiplication by a constant

has been shown by a circle, with desired constant indicated.
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dt
dy
lyl dil
— dt
dy
y dj

y(t)

y-yy+y?=0
or
dy =ydy+ydy—2ydy

Fig. 8 CONNECTIONS FOR SOLUTION OF ¥ - y y + y2 =0
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Chapter III
REALIZATION OF TRANSFER FUNCTIONS BY USING DIGITAL INTEGRATORS

The transfer function is defined as the ratio of the Laplace trans-
form of the output quantity to the Laplace transform of the input, with
the restriction that the initial conditions appearing in the transformed

differential equation (or equations) are all zero [11]}. Let

Transfer function = G(s) = g{xgzg} = ;E:i (3.1)

where y(t) and =x(t) are output and input, respectively, of a system.
Suppose we have a black box with transfer function G(s). It is our pur-
pose to relaize the black box with digital elements.

Example 3: Given a simple transfer function

_Y(s)

1
G(s) = s+ 1 X(s)

where s is the complex variable. Realize G(s) with only digital
elements, and show the steps of realization in detail.
Solution: First, transforming the given function back to the time

domain, we have

y(t) + y(t) = x(t)

or

dy = dx - dy

The network having the above characteristics can be realized by inter-
connecting the digital building blocks, as shown in Fig. 9.
For convenience, the network realized contains two registers of

eight bits each (see Fig. 10). The eight whole number bits have a

15 SEL-67-085



dy
\ dt [R_REGISTER—

y dy —dt
o 2
Z | dx 4

iro 9 I¥ REGISTER
S
z
dxo

Fig. 9 REALIZATION OF TRANSFER FUNCTION 1/s + 1)

FLIP
FLOP dy=0, lor-|

R REGISTER

—L [ T T [ T T T 1]

GATE
AND |w——dt
ADDER

- 1 T [ T [ T T

y REGISTER

o

ADDER

dx

Fig. 10 TRANSFER FUNCTION 1/ + 1) WITH 8-BIT REGISTERS
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8
capacity of 2 = 256 maximum. The input dx can be obtained as the

difference of the two consecutive samples of the input. TIn other words,

dx, = x(t,) - x(t;_,)

During the presence of the dt pulse, the duration of dt «can be roughly
divided into three sub-time intervals, Tl, T2, and T3. In the time
interval Tl, the summation of dx and -dy is performed, where -dy
comes from the flip flop F, which contains the overflow of the R register.
Within T,, the addition of (dx-dy) to the contents of the y register
will be placed into the y register. Meantime, the flip flop F will be
reset. Then in interval T3, the contents of the v register is added to
the contents of the R register and the result is placed in the R register.
If the R register has no overflow, then the flip flop F output is zero,
i.e., dy = 0. 1If there is an overflow, the output of F is one. 1In
other words, dy =1 or dy = -1. The choice depends on the sign of the
R register.

For the case, of Example 3, dy = -1 if R< -256 and dy =1 if
R > 256.

The structure of the digital integrator can be connected either in
serial or in parallel fashion. The structure is much simpler for the
serial digital integrator but the operation speed is much slower.

The simulation of the given problem has been done on the digital
computer. The computer program of the sinusoidal response and unit step
response of the network are shown in Appendices B and C. The step-by-step
calculations are tabulated in Tables 1 and 2, and the graphical responses
are shown in Figs. 11 and 12, where the method of triangular integration
with the ternary code is assumed.

On the basis of the results of the unit step response and sinusoidal
response, a comparison of the digital realization and the analog realiza-
tion can be made. From the last two columns of Tables 1 and 2, it is seen
that the contents of YREG (digital) are a good approximation to the real
solution (analog). Note that the figures tabulated have been scaled 256

times. At most they differ by one per 256 for registers of 8-bit length.

17 SEL-67-085



Table 1
SINUSOIDAL RESPONSE OF
G(s) = 1fs + 1) RESULTS BY DIGITAL ELEMENT REALIZATION
Input: x(t) = 255 sin t
Let t = T/256, xi(t) = 255 sin(T/256 i), dx = Xi(t) - XREGi_

1
XREG, = XREG, . + dx YREG, = YREG, . + dY
1 i~-1 i i-1 _
dy = dx - dY RREGi = RREGi_1 + YREG
dY = 1 while RREG has overflow, otherwise dY = 0

YREG, YREG, ,+dY
1 1=

1

Assume that all registers have 8-bit length, and that the method of
triangular integration with trinary code is used.

T XREG YREG RREG dy YREG Real Solution y(t)
0 0 0 0 0 0 0
1 0 0 0 0 0 0.0019
2 1 1 1 0 0 0.0077
3 2 2 3 0 0 0.0175
4 3 3 6 0 0 0.0310
5 4 4 10 0 0 0.0485
6 5 5 15 0 0 0.0697
7 6 6 21 0 0 0.0948
8 7 7 28 0 0 0.1236
9 8 8 36 0 0 0.1563
10 9 9 45 0 0 0.1927
11 10 10 55 0 0 0.2329
12 11 11 66 0 0 0.2768
13 12 12 78 0 0 0.3244
14 13 13 91 0 0 0.3758
15 14 14 105 0 0 0.4308
16 15 15 120 0 0 0.4895
17 16 16 136 0 0 0.5519
18 17 17 153 0 0 0.6179
19 18 18 171 0 0 0.6876
20 19 19 190 0 0 0.7609
21 20 20 210 0 0 0.8377
22 21 21 231 0 0 0.9182
23 22 22 253 0 0 1.0022
24 23 23 20 1 1 1.0898
25 24 23 43 0 1 1.1809
26 25 24 61 0 1 1.2756
27 26 25 92 0 1 1.3737
28 27 26 118 0 1 1.4754
SEL-67-085 18



32
33
41
64
96
128
160
192
224
256
288
320
352
384
416
448
480
512
576
640
704
768
800
832
896
960
992
1000
1024
1152
1280
1408

XREG

31
32
40
63
93
122
149
173
195
214
230
241
250
254
254
251
244
232
199
153
98
36

=27
-89
-145
-170
-176

YREG

30
31
38
56
78
96
110
120
126
129
129
124
118
108
95
81
65
46

-37

-78
-116
-131
-146
-168
-181
-183
~183

Table 1 (continued)

RREG

232
7

27
95
209
192
175
33
153
159
203
171
216
244
157
178
210
188
71
-172
-292
-115
-222
-59
-194
-163
-104
-33

[=F
<

HHRFFRFOFEFOHOOOOODOODOOOOOOHOOOOKRRKRO

19

-158
-180

Real Solution y(t)

1.9166
2,0355
3.1079
7.3334
15.7509
26.6718
39.6026
54.0565
69.5563
85.6381
101.8551
117.7813
133.0156
147.1856
159.9513
171.0087
180.0927
186.9797
193.4906
189.6576
175.3460
151.1551
135.7300
118.3627
78.8314
34.8820
12.0636
6.3290
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Table 2

UNIT STEP RESPONSE OF G(s) = 1/(s + 1) RESULTS
BY DIGITAL ELEMENTS REALIZATION

T XREG YREG RREG dy YREG Real Solution y(t)
0 0 0 0 0 0 0
1 255 255 255 0 0 0.9980
2 255 255 253 1 1 1.9922
3 255 254 251 1 2 2.9824
4 255 253 248 1 3 3.9689
5 255 252 244 1 4 4.,9514
6 255 251 239 1 5 5.9302
7 255 250 233 1 6 6.9051
8 255 249 226 1 7 7.8762
9 255 248 218 1 8 8.8436
10 255 247 209 R 9 9.8072
11 255 246 199 1 10 10.7670
12 255 245 188 1 11 11.7230
13 255 244 176 1 12 12.6754
14 255 243 163 1 13 13.6240
15 255 242 149 1 14 14.5690
16 255 241 134 1 15 15.5102
17 255 240 118 1 16 16.4478
18 255 239 101 1 17 17.3817
19 255 238 83 1 18 18.3120
20 255 237 64 1 19 19,2387
21 255 236 44 1 20 20.1617
22 255 235 23 1 21 21.0811
23 255 234 1 1 22 21.9970
24 255 233 234 0 22 22.9093
25 255 233 211 1 23 23.8180
26 255 232 187 1 24 24,7232
27 255 231 162 1 25 25.6249
28 255 230 136 1 26 26.5230
29 255 229 109 1 27 27.4177
30 255 228 81 1 28 28.3088
31 255 227 52 1 29 29.1965
32 255 226 22 1 30 30.0807
33 255 225 247 0 30 30.9615
64 255 56 56.6269
96 255 80 80.0539
128 255 100 100.7281
160 255 118 118.9730
192 255 134 135.0741
224 255 149 149.2833
256 255 161 161.8228
288 255 172 172.8889
320 255 182 182.6547
352 255 191 191.2730
384 255 198 198.8786
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T

416
448
480
512
576
640
704
768
800
832
896
960
992

Table 2 (continued)

XREG  YREG RREG ay YREG Real Solution y(t)
255 205 205.5906
255 211 211.5138
255 216 216.7411
255 221 221.3541
255 228 229.,0177
255 234 234.9862
255 239 239.6344
255 242 2432545
255 244 244.7521
255 245 246.0738
255 247 248.2694
255 249 249.9794
255 250 250.6868

200 |-
100
0 | I | i T
256 512 768 1024 1280
Fig. 11 SINUSOIDAL RESPONSE OF G(s) = 1/(s + 1)
WITH INPUT x(t) = 255 sin (T/256)
21 SEL~67-085




300 [~
s ———————————— —
200
100
o 1 1 I | |
) 256 512 768 1024 1280

Fig. 12 STEP RESPONSE OF G(s) = 1/(s + 1)
WITH INPUT x(t) = 255

If registers with more than 8 bits are used, the accuracy will be propor-
tionally increased.

The closeness of the two solutions--digital and analog--is shown in
Fig. 13; if trapezoidal integration is employed in the design integrators,
the accuracy of the digital solution will be further improved.

It is noteworthy that even if the input is not started from zero at
t = 0 as was assumed in Tables 1 and 2, the digital realization is still
valid.

For better approximation, more register bits can be used. 1In the
presence of the fractional numbers, as well as the whole numbers, a few
fractional number bits can be attached to the end of the whole numbers
and a fixed decimal point assigned. For example, to maintain an accuracy
of 10_3, ten bits corresponding to the fractional number will be used in
addition to the whole number bits, since 2_10 = 1/1024 2:10_3.

The above simple example is used to illustrate how the given trans-

fer function can be realized. As for the realization of a complicated
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6.0

4.0

20

400

SINUSOIDAL RESPONSE

TRUE. SOLUTION
y(t)
\CONTAINS OF THE
Y REGISTER
10 20 30 40 50 55— T=256!

UNIT STEP RESPONSE

TRUE SOLUTION
y(t)

CONTAINS OF THE

300 Y REGISTER
200
100
% 0 20 30 26 5 a0 =256t

Fig. 13 COMPARISON OF THE TWO RESPONSES
OF ANALOG AND DIGITAL REALIZATION
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transfer function, we could use more digital integrators. In general, a

transfer function has the form

+b -
b s n-1° + + bls + bo _ ¥(s) 5.2)
n Sm—l + ... + a,s + a X(s)
1 o

where m > n.

After dividing by sn, G(s) has the following expression

- -n -
Y(s) _ bn + bn—ls + ... + b.s + bos

G(s) = X(s) SO0 Sm—l—n ' l-n -n (3.3)

The realization of this general transfer function is quite tedious
but straightforward; the realization of a specific case, m=5, n =3

is shown as follows:

Example 4: Realize the following transfer function:

1
Gl(s) _ Y(s) _ 3 2 1

X(s) 52 + a,s +a, +a s_1 + a -2 -3

or

SZY(s) = -a4sY(s) + [bSX(s) - a3Y(s)] + [bZX(s) - z—azY(s;)]s_.1

-2

+ [b)X(s) - ag¥()]s™” + [bX(s) = a¥(e)]s™

Solution: In the time domain, we have

y = —a4}'7 + (b3x - a3y) + f(bZX - azy) dt + ff(blx - al}’) dt dt

+ff (box - aoy) dt3

SEL-67-085 24



or

. . 2
dy = -a, dy + (b3dx - a3dy) + (b2X - azy) dt +f(b1x - aly) dt

4

+ff (box - aoy) dt3

The realized network is shown in Fig. 14,

Another noteworthy subject is that those transfer functions to be
realized need not have positive coefficients, since we are dealing with
numbers internally while we are realizing the transfer functions. No
extra efforts are required to change the addition operation to subtraction;
therefore, transfer functions with negative coefficients, i.e., either
negative transfer functions or transfer functions with transmission zeros
at the right-half complex frequency plane, can be realized as easily as
those illustrated.

The following examples will help in understanding the subject.

Example 5: Realize the following transfer functions:

b .G3(S) - §§§§ - 5=
s  +s + 1
Solutions:
a. Step 1 Transform G2(s) back to time domain
y() + y(t) = -x(¢t)
Step 2 Take the derivative of the above expression
dy = -dx - dy
Step 3 After mapping the solution, the realized network of

GZ(S) is as shown in Fig. 15.
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dt y REGISTER
dy e
y >

dy @ S b3 dx

<
1
™M

z

S

byx - a,y Z d(byx ~0,y)
T fop-oyar?

dat ﬁb,x-o,y)d? é

(bx - 0)y)dt
bx-ay / d(bx-ay)

: ot fzdf2 =ff( box-c;(’y)dt3
jzdt :
t
z

d

4 dz

dt
\ dls(v-aoy)df
boX - g,y A(box-ooy)

Fig. 14 REALIZATION OF TRANSFER FUNCTION

G, (s) =<b +bs_1+bs_2+bs—3>/(fs2+as+a +as_l+a
1 ) 4 3

s_2 + s_3>
3 2 1 2 4
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b.

OUTPUT
y(t

e

dt
dy, .
4 J b
d -
Y y Z [ dx
e
dx INPUT
oX
Fig. 15 REALIZATION OF G,(s) = -1/(s + 1)
Step 1 Transform G3(s) back to the time domain with s
divided through.
y(t) + y(t) +fy(t) dt = x(t) —IX(t) dt
Step 2 Take the derivative of the above expression
dy = dx - dy - [x(t) + y(t)] dt
Step 3 After mapping the solution, the realized network is

as shown in Fig. 16.
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_OUTPUT

y(t)
—
i dtd — ¥y | / dyJ
y o
y /a4y
L 2 dx
dt
AN —{x+y)dt
-(x+y) /—d(x+y)
-] g;
s dy 1
(-]
o9x INPUT

2
Fig. 16 REALIZATION OF G3(s) =(s+ 1)/(s" +s + 1)
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Chapter IV
DIGITAL FILTER DESIGN TECHNIQUE

1. Digital Filters

Generally speaking, the term digital filter refers to the computa-
tional process or algorithm by which a sampled signal or sequence of
numbers (acting as an input) is transformed into a second sequence of
numbers termed the output signal. So far, the real time digital filters
designed are utilizing digital computers to execute the difference equa-
tion of which the desired transfer functions of digital filters in z-
transform are satisfied [4,5,8].

The digital filters we are proposing here are somewhat different
from the prescribed definition and have different structures. Physically,
they are composed of small size digital building blocks, such as registers,
logic gates, and adders, and they deal with quantized signals rather than
with discrete signals. Their functions are analogous to the continuous
(analog) filters, and they are actually very good approximations to analog
filters. The digital filters designed in the proposed fashion have defi-
nite advantages over the analog filters and sample~data digital filters
because of their small size, accuracy, stability, and real time control-

ability.

2. Digital Filter Design Techniques and Implementation

The design procedures for continuous filters, such as Butterworth
and Chebyshev filters, are treated in standard texts [ 3,9,10]. They are
discussed briefly in Appendix A.

The technique of designing a digital filter by using digital inte-
grators is fairly straightforward. After the designer decides which type
of filter fits his needs, he follows the outlines listed in Appendix A
until he gets the desired transfer function. He then transforms the trans-
fer function back to time domain whereby a linear differential equation can
be formed. He follows the procedures listed in section III and obtains a
diagram of interconnected digital integrators. Thus the design of the

digital filter is completed.
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Two methods of realization are shown here.

Method 1

Suppose a desired transfer function of a digital filter has been

found; for example,

k Y(s)
G(s) = = (4.1)
53 + fs2 +gs +h X(s)

Then after cross-multiplying, we obtain
3 2
(s7 + fs” + gs + h) Y(s) = k X(s) (4.2)

Transforming back to time domain, we get

Y(t) + fy(t) + gy(t) + hy(t) = k x(t) (4.3)

Differentiating once and rearranging, we have

dy =k dx - f dy - g dy - h dy (4.4)

The structure can be formed in series; that is, the output of one inte-
grator feeds into the input of another integrator, as shown in Fig. 17.
Method 2
A different method can be used to deal with the design of a digital

filter, but the same transfer function as used in Method 1, i.e.,

6(s) = — k - X(s) (4.1)

s  + fs2 +gs +h X(s)

can be expanded into partial fraction form

o(s) = > - S
(s +a) (s" +bs +c¢) s  +bs + ¢
= Ga(s) + Gb(s) (4.5)
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where

Y, (s)
I
Ga(s) =5 +a X(s)
Y,(s)
G (s) = rs + q _ 2
b 32 + bs + ¢ X(s)
Yl(S) + Yz(s) = Y(s) (4.6)

and a, b, ¢, k, £, r, and q are real constants.

Since
Yl(S) = Ga(S) X(s) ; YZ(S) = Gb(S) X(s) 4.7)

in the time domain
ﬁl(t) + ayl(t) = £x(s) ; §2(t) + b&z(t) + cyz(t) = rx(t) + qx(t)
or
dil = fdx - a dy1 4.8)
and
5’2(t) + byz(t) + cfyz(t) dt = rx(t) + qfx(t) dt
Then differentiating once, we get

d&z = -b dy2 + r dx + (gqx dt - ey, dt) (4.9)

The overall output y(t) = yl(t)+y2(t) can be found and its structure
can be illustrated as in Fig. 18.
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dt

|

d

" m i\ dx
y /Y 5 & NPuT
Ist INTEGRATOR
at
dy
11} dy f-f\
2nd INTEGRATOR A
dt
d
! 2l o)
3rd INTEGRATOR 4

yih

®

Fig. 17 SERIAL CONNECTION OF THE TRANSFER FUNCTION
G(s) = k/(s3 + fs2 + gs + h)

d'dy
1
yI d9 | pX e
-———@— dy|+dy2
pX
cﬁdx .
INPUT

dt 4
. % S >_
% > @-«» H

M (ax-cn)dt OUTPUT

qx-cy, / 5 le—(-c)-

3 2
Fig. 18 PARALLEL REALIZATION OF G(s) = k/(s™ + fs” + gs + h)
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Note: A rational polynomial of n-~th order can always be factorized
into a product of factors of the first and second order rational poly-
nomials, Therefore, the transfer function of any order can be realized

by Method 2 in a parallel fashion.

Comparison of Methods 1 and 2

It has been pointed out in Method 1 that the interconnection of digi-
tal integrators is done in serial fashion. During the first few clock
pulses of time (dt) only the first integrator starts to update its con-
tent. But before any overflow of the first integrator occurs, the second
and third integrators remain unchanged. Therefore, the input of the first
integrator will not be modified by the outputs of the second and third
integrators until some later time. Since the transfer functions of digi-
tal filters have different orders of numerators and denominators, the
interconnection will be different from case to case. Unless each digital
integrator can be integrated on a single chip, there will be too many dif-
ferent units to be handled.

As for Method 2, the advantages are threefold: they are accuracy,
simplicity, and economy. Since the interconnection of the integrators
is in parallel, the integrators are updating their contents at the same
time, it results in somewhat better accuracy. The configuration of
digital filters of any order can be broken down to a combination of first
and second order configurations. Therefore, the simple standard config-
urations of first and second order functions can be mass produced in

integrated circuit module and can be for all transfer functions.

Proposed Standard Configuration

Since any high order rational polynomials can be factorized into
products of lower order polynomials, it is convenient to propose a stan-
dard configuration for a transfer function whose order n 1is less than
or equal to three. However, if n should be greater than three the net-
work can be a combination of more packages of n < 3.

In general, a third order transfer function can be written as

+
Gy(s) = £ + k ,_ses*tc (4.10)

s +h 52 + as + b
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The proposed standard configuration of G3(s) is shown in Fig. 19. It

is seen from the figure that the following cases can be obtained.

1. 1If line 2 and 3 are left open, then Eq. (4.10) becomes

k
s + h

G3(S) =

2. 1If line 2 is left open, then

k
s +h

G3(s) = f +

3. If line 1 and line 3 are left open, then

4., TIf line 1 is left open, then

G3(s) - f + es + ¢

s +as +b
5. 1If line 3 is left open, then

k es + ¢
G3(S) " s+ h +

32 + as + b

Therefore, the configuration shown really works for n < 3. To increase
the flexibility, the real constants a, b, ¢, d, e, f, h, and k
(see constant multiplier, Fig. 6) can be set from outside, so that one
may choose whatever constants he wishes. This can be done either by set-
ting the constants serially from the outside before the beginning of the
operating cycle, which will remain constant thereafter; on the other hand,
if each register of the constants can be accessed from outside they can be
set easily to the desired constant. If any one or more of these constants
are negative, it is very easy to change the leads around.
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OUTPUT
LINE |
y=yFyFix dy 23
db
LINE 2
LINE 4 LINE 3
dx b f?\,
INPUT N

Fig. 19 PROPOSED CONFIGURATION FOR A TRANSFER FUNCTION OF ORDER
£3 G3(s) =f + k/(s + h) + (es + c)/(s2 + as + b)

In case of necessary, it is also possible to divide the standard
configuration into a few sections such that the packaging could be made
easier,

It is seen from Fig. 19 that if the configuration shown can be inte-
grated on one chip, there will be some unused parts if the transfer func-
tion is of the order of two or one. But not much simplification between
configurations of the 3rd and 2nd order transfer functions was observed.
Another scheme is also possible; that is, break line 1 and line 4, such
that the transfer function of order three is a combination of lst and 2nd
order transfer functions, whereby each one of them can be independently

operated.
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The following examples are used to illustrate the design and imple-

mentation of digital filters using both methods 1 and 2.

Example 6: Design a low pass filter, using the Butterworth transfer
function

. 2 1
el -

to have a magnitude characteristic such that at a frequency three times

the cutoff frequency, the magnitude is at least 25 dB down from its value

at zero frequency.

Solution: First, let us find the required value of n:

1 -2.5

n
5n = 10 or log10 (L+9) = 2.5
1+w
w=3
n . o~ _2.5
9" =~ 316 or n RGgEr = 2.62

Thus the required value is the next larger integer n = 3,

For n = 3, the third order Butterworth polynomial is

B3(s) = 53 + 232 + 2s + 1

hence the transfer function G(s) can be obtained as

1 _ Y(s)
s + 2s2 +2s +1 X(s)

G(s) =

Now we try both methods of realization.

Method 1

Transforming G(s) back to the time domain, we have

Y(t) + 2y(t) + 2y(t) + y(t) = x(t)
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or

d¥ = dx - 2d§ - 2dy - 2dy

The connection of the solution and the realized network diagram is
shown in Figs. 20 and 21, respectively. The sinusoidal response and the

step response of the network realized are plotted in Figs. 22 and 23.

ay
dt —{y REGISTERI
S dy

®

y 4
______—__Yq:d'
i S &
- dt
2

Fig. 20 SOLUTION MAPPING OF METHOD 1

Method 2
1 Y(s) 1 s
G(S) = = = -
s3 + 252 + 2s + 1 X(s) s+ 1 52 + s + 1

Gl(s) - Gz(s)
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d {t)
R, REGSTER|— y REGISTER [s7apuT

3 —oat

z y REGISTER

R, REGISTER|—~. »——@—

2 [e—dt

p y REGISTER

R, REGISTERI— »—@-—

2 f—dt

x(t) dx

°INPUT pX X —-{y REGISTERI

Fig. 21 REALIZED NETWORK OF
G(s) = 1/(s> + 2s% + 2s + 1) BY METHOD 1
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200

100

Fig. 22 SINUSOIDAL RESPONSE OF G(s) = 1/(s3 + 252 + 2s + 1)
WITH INPUT x(t) = sin (T/256)

300 |-
200 |-
100 |-
0 1 | L 1 1
o 256 512 768 1024 1280

T

Fig. 23 STEP RESPONSE OF G(s) = l/(s3 + 232 + 2s + 1)
WITH INPUT x(t) = 255
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Gl(s)

1 _Yy(8)
~ X(s)

G.(s) =
2 s2 +s+1

In the time domain, we have

dy,(e) = dx(t) - dy, (£)

and

il

dyz(t) dx(t) - dyz(t) - yz(t) dt

The output signal y(t) equals y(t) = yl(t)—yz(t)
The digital filter designed by Method 2 is shown in Fig. 24.

™M
©

cﬁdx
INPUT

2
Fig. 24 REALIZATION OF G(s) = 1/(s + 1) - s/(s" +s + 1)
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Example 7: Design a low pass filter utilizing the Chebyshev

characteristic
2 1
le(Gn)1” = 5
1 +¢ Cn(w)
so that
1. The peak-to-peak ripple in the squared magnitude characteristic

does not exceed 15 percent of the maximum value.
2, The magnitude response is down at least 50 dB at w = 4wc = 4.

Solution: First, it is necessary to calculate the required value of

€”. At the trough of the ripple, we have
—————%T————-= 1-~-0.15=0.85 or 1 + 82 = %%
1 +e°Cc (1)
n
hence
82 = 0.175

At w =4, we have

—L -0 st -0
l+¢ Cn(4)
or
e e’y = 10° implies C(4) = 753
In order to find n we have
%[(w + w2 - 1>n + (w +V w2 - 1)_11] , = 753
w=
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5 n
<w +V iy - 1) l = 1506 or n = 3,58
w=4

Therefore, n =4 will be more than satisfactory.

The location of the poles for the fourth order Chebyshev polynominal
can be found as follows:

Pole locations at S, = 0 +ijw

L = Oy k=1, 2, 3, &4

k’

Q
I

' * tanh a sin([(2k - 1)/n])(w/2)

Il

cos [(2k - 1)/21(n/2)

where

a= % sinh_l 1
For the present case, n = 4, 82 = 0.176
a =g sinh " 5= 7 sish " (2.38) = 0.402
tanh a = 0.38

Therefore

8, = -0.144 + j0,924

s, = -0.144 - 70,924

54 = -0.351 + 30.383

s, = -0.351 - j0.383

Hence the transfer function G(s) can be obtained
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s, §, S5, S
Gls) = ;E:; _ 1 %2 ®3 %4

(s - Sl)(s - 32)(3 - s3)(s - 54)

0.111
(s2 + 0.288s + 0.416)(92 + 0.702s + 0.268)

0.111
+ 0.88632 + 0.369s + 0.111)

(s4 + 0.99s3

Method 1 Transforming G(s) back to the time domain

Y(t) + 0.99%(t) + 0.886%(t) + 0.369y(t) + 0.11ly(t) = 0.111 x(t)

or

dy = 0.111dx - 0.99d% - 0.886dy - 0.369dy - 0.1lildy

The network realized corresponding to the above equation is shown

in Fig. 25.
Method 2

0.414s + 0.268 + 0.414s + 0.439

G(S) == 2 2
s + 0.288s + 0.416 s° + 0.702s + 0.268

n

- Gl(s) + GZ(S)

where

0.414s + 0.268 ¥, (s)
G, (s) == = X(s)
s% + 0.288s + 0.416

0.414s + 0.439 12(8)

s2 4+ 0.702s + 0.268 X(s)

G2(s) =

43
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| U]
y REGISTER BUTPU

A >
0.l
at
gy -0.369/>
A N
dt
Ny -O.BBGQ
Y &
dt "
N__d¥ | /)09
"9‘ /duu U
2
/ol
_/
x(1)
“INPUT 5 |
)
x REGISTER
Fig. 25 REALIZATION OF
G(s) = 0.111/(s® + 0.99s> + 0.886s> + 0.369s + 0.111)
BY METHOD 1
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Transforming Gl(s) and Gz(s) back to the time domain, we have

§1(t) + 0.288y, (t) + 0.416y,(t) = 0.414%(t) + 0.268x(t)

and
§2(t) + 0.702y,(t) + 0.268y,(t) = 0.414k(t) + 0.439x(t)
or
d§1 = 0.414dx - O.288dyl + 0.268xdt - 0.416y1dt
and

d&z 0.414dx - 0.702dy2 + 0.439xdt - 0.268y2dt

and the overall output y(t) 1is

y(t) =y, (&) -y, (&)

The network realized by Method 2 is shown in Fig. 26.

3. Digital Spectrum Analyzer

The spectrum analyzer is a device used to measure the distribution
of energy at different frequencies of interest. One way of measuring
the frequency spectrum is to measure the energy in the passbands of a
bank of narrowband filters. The digital spectrum analyzer we are dealing
with is realized by a bank of narrowband digital filters, each with a
fixed bandwidth spanning the entire frequency range of interest.

An example of designing a bank of bandpass filters is shown in the
following:

Example 8: It is desired to design a bank of bandpass filters with
a common input, each 400 cycles per second wide covering the band 300 Hz
to 3100 Hz. The contiguous filters are required to cross at -3 dB of the

midband gain., Use third order maximally flat approximation.
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dt

-t
y,dt 0.416 , y,dt 0.268
Y, %
dt g
. dy 0.288 . Y. 0.702
Y e Y2

)
©
z b
dt
X 0.268
x 7/ \0.439
./
dx [ \0.414
\/

Fig. 26 REALTIZATION QF
G(s) = 0.111/(¢s" + 0.99s> + 0.8865% + 0.369s + 0.111)
USING METHOD 2

Solution: The transfer function of each bandpass filter can be found
from the frequency transformation of a low pass filter. For a third order

maximally flat low pass filter, the transfer function is

1
G (s) =3

s + 2s2 + 2s +1

Let us make the following tranformation:

3}

w
_.° (P-4, _ 0O
s =3 <Wo + ) ) (4.11) 1
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then

B3p3
G, (s) = (4.12)
B p6+2Bp5+(3w2+2B2)p4+(B3+4Bw2)p3+(3w4+2B2w2)p2+2Bw4p+w
0 o o o o° o
where
B = bandwidth of the bandpass filter
w, = geometrical mean of the cutoff frequencies of the bandpass

filter = \,/wlw2
wy = lower cutoff frequency of the bandpass filter
W, = higher cutoff frequency of the bandpass filter

p = complex frequency

With the given transformation formula, the first bandpass filter,

from 300 Hz to 700 Hz, can be designed first:

w, o= 300 x 700 Hz = 458.258 Hz
B = 400 Hz
Normalizing Bn =1, and o T 458.258/400 = 1,1456, the transfer

function of the first bandpass filter is

3
Gl(P) = 7% 5 A P 3 5 (4.13)
p + 2p” + 5.937p + 6.25p” + 7.79p  + 3.446p + 3.26

This transfer function can be realized by Method 1 of section IV.2
without much difficulty. But we will try to realize it in parallel
fashion. There is no doubt that theoretically the denominator of G](p)
can be factorized as (p2+ap+b)(P2+Cp+d)(p2+ep+f). But it is very diffi-
cult to factor it as the order of the polynomials increases. From another
point of view, since we know the pole locations of the transfer function,
we might factorize the denominator directly from the transfer function of

the lowpass filter:
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G. (s) = 1 - 1 _ S
L s3 + 252 + 2s + 1 s +1 52 + s +1

1 S
s+1 (s+0.5+ jO.866)(s + 0.5 - j0.866)

Now, we can make the transformation

£
o™

1
o=
A
o
+
vl 3]
N—

w
B w P

(o]

then
3. 2
~ Bp p + wop
Cp(P) = 55 - 73 . 27T 2 ) 7
p P Lp +(0.5+0.866)Bp+w_ | | p“+(0.5-30.866) Bptw,
(4.14)
2
1 ( U0
G (p) = L . 5
(P

2
1 W2 1 Yo
§<p+52>+1 §<p+;—>+05+_']086 p+-—+0-5-j0-866

The poles of the second term can be found as follows:

I
o

p2 + (0.5 + 30.866)Bp + wi

1+

[—(0.5 + j0.866)B JQ0.5 + §0.866)°B - 4w§]

o
[}
o=

Wu + 3V 1= -;-[(—0.53 £ Ju) - 1(0.866 B + Vv)]

1
N

[-(0.5 + j0.866)B

1+
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u- v = B2 - 4w2
o
2
uv = 3B/16 and
ut+v =+ VQu - vj27+ 4uv

p; = (-0.25B + 0.5/u) - 3(0.433 - 0.5W)
P, = (<0.25B - 0.5V1) - 5(0.433 + 0.5V%) (4.15)

The other two poles can be found by solving

p2 + (0.5 - §0.866)Bp + wi -0

or
Py = (-0.25B + 0.5 Ju) + 3(0.433 - 0.5,/v) (4.16)
p, = (-0.25B - 0.5./u) + j(0.433 + 0.5/v)

Then GB(p) can be written in partial fraction form as

G (p) = I L ) 2P * by
B p2 Fp+ Wi ®-p) -2y (-py) (®-p,)

Bp

(4.17)

where a;s 2, bl and b2 are real constants. They can be found in terms
of B and v from Eq. (4.14). For our present design problem, B =1,
ol = 1.1456, and u = 0.0448, v = 4.2948. Substituting these values

into (4.15) and (4.16) we get P1sPgy = -0.144 * j0.603; PysP, =

w

-0.356 + j1.469. Substituting them into Eq. (4.17), we obtain

p ___0.545p +0.105 _ _ __0.455p - 0.624
p? 4 p+ 1.312 p> + 0.288p + 0.384 p> + 0.712p + 2.284
(4.18)

Gl(p) =
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There is no doubt that the transfer function Gl(p) of the bandpass fil-
ter can be realized by parallel connection of three building blocks, each
block containing digital integrators such as those discussed in the pre-
vious section.

Similarly, the next bandpass filter of frequency range 700 to 1100 Hz
can be designed with w., = (700 x 1100)/(400 x 400) = 4.813; B_ =1,

u=0, and v = 18.25; therefore,

= - + 3
p19p3 0.25 % 31-704

Pysb, = —0.25 + j 2.57

and

GZ(P) - P _ 2.498p + 0.351 2.502p - 0.851
p +p+ 4.813 p + 0.5p+ 2.96 p 4+ 0.5p + 7.18
(4.19)
The realization of Gz(p) is similar to Gl(p). The realized networks
of Gl(p) are shown in Figs. 27 and 28. By using the same methods,
Gz(p), G3(p), Ga(p), N G7(p) can be designed by simply changing
the contents of the constant registers, as in Fig. 29. For each Gi(p),
three chips of the proposed configurations are used. For a bank of
digital filters, as in the present example, twenty-one chips will be
used and no doubt they can be mounted on a small card.

It is seen from Eq. (4.17) that if we factorize the sixth order poly-
nomiﬁal with a small error produced at one pole location, the remaining
five pole locations will be affected. In other words, a small coefficient
perturbation (or truncation) may result in a large shift in root location.
On the other hand, the parallel two-pole filter combination will result in
a better performance, since the coefficient perturbation of the first term
will not change the pole position in the second and/or the third terms.

Therefore, it is advisable to use the parallel combination in the design.
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0.545p + 0,
Gy, (p) = —=222R 1 0.105
p_ + 0.288p + 0.384

or

dy1b = 0.105xdt - 0.384y1bdt + 0.545dx - 0.288dylb

Glb(p) can be realized as shown

o
. - 0.62
6, (@) = 20 455p = 0.624
p°~ + 0.712p + 2.284
or
dy, . = 0.455dx - 0.712dy, - 0.624xdt - 2.284y, dt
-
I N
|
|
|
|
l
|
ﬁdx |L

Fig. 28 REALIZATION OF Glb(p) and Glc(p)
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“U)

(1)
ANALOG pieTaL % - P ACCUMULATOR s
x{t)o=NshT 1 ARC NFUT GlP)= ~Frp+iaiz e uT

6 (p) = 0.545p+0.105
Ib p2+0288 +0.384

o (o) = 0:455p-0624
1P T 2roTI2pte 284

where

p
p2 + p + 1.312

Gla(p) =

or

d&la = dx - dyla - 1.312y1adt

can be realized as

S m
—Tdt ymdtf\ 1.312 ylodf
L'—m [ ame |

|
: dtdyIv:l dylo l
|
|

ylo / z x

|
|
|
|
|
|
|

cg;

Fig. 27 REALIZATION OF Gla(p)
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xi{t) dy, (1)

x(t) _

OUTPUT

Gz(p) = Gau (p)+GZb(p)+62c(p) -

dy|2(?)
t
l: DAC y(

ouTPUT

-

Go{P) =Gy, (p) + Gy (P) +G(p) anah)

Fig. 29 REALIZATION OF A BANK OF DIGITAL FILTERS

4, Digital Filters with Time Varying Coefficients

It is possible to design a digital filter with time varying coeffi-
cients. Since the transfer function of this kind of filter is not defined
as are those in section IV.I, a time domain synthesis will be discussed.
The following example will illustrate the realizability of this kind of
filter.

Example 9: Suppose x(t) and y(t) are the input and output of a

digital filter in such a way that the following relation is satisfied:
y(t) + a(e)y(t) + b(r)y(t) + c(t)y(t) = c(t)x(t)

Design such a network.

Solution: It is seen that if a(t), b(t), and c(t) are constants,
the problem can be reduced to one of the typical digital filter design
problems. Now, with time varying coefficients, it is necessary first to

differentiate the equation,

dy = d(cx - cy) - d(ay) - d(by)
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then use digital integrators to generate the terms d(ay), d(by), d(ecy),
and d(cx). Note that

d(ay) = ady + yda

which can be generated by integrators, as shown in Fig. 30, where dy is
an output of an integrator and da 1is the differential of the input a(t),
hence it is controllable from the outside. By using more integrators,

the given problem can be designed as in Fig. 31.

The author has not yet investigated the advantages or any applica-
tion of digital filters with non-constant coefficients, but an interesting
case of this particular type of filter will be discussed.

As we know, the location of the poles of the Chebyshev filters differ
only slightly from those of the Butterworth filters [9]. Therefore, if
the time varying coefficients are changing in such a way that the poles
are shifting horizontally (in the s-plane) from the Butterworth pole locus
to the Chebyshev pole locus, the digital filter will have a changing mag-
nitude square characteristic from the maximum flat response to different

equal ripple responses,

o do
N\__Ygo
n dll .
Y Y s d(ay)
< 6d'y'
a A:
a(t)
o—
z do
(3]

a REGISTER

Fig. 30 GENERATION OF d(ay)
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yda dlaly) >_
z y dy

~-
Q
b3

diby | < [dY

11

/ .
dc
(x-y)dc
x-y > de-y)f |

I‘ > dlcx-cy)
¢ 54 cdix-y)
dy
ot s dx s dix-y)
o

ix REGISTER

Fig. 31 REALIZATION OF DIGITAL FILTER WITH TIME VARYING COEFFICIENTS
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PRECEDING PAGE BLANK NOT FILMEL.

Chapter V

IMMITTANCE FUNCTION REALIZATION

DRIVING POINT
USING DIGITAL INTEGRATORS

I
BY

1. Driving Point Impedance Function Realization

The driving point impedance function Zl(s) of a network is defined
as the ratio of V, (s) to I, (s), where V, and 1, are, respec-
in in in in
tively, the input voltage and input current in Laplance transform form;
namely, Zl(s) = Vin(s)/Iin(s)'
Consider a one-port network as shown in Fig. 32 with an internal

current transfer function GI(s) defined as

IZ(S)

Il(S)

GI(s) = (5.1)

where Il(s) and IZ(S) are the input and output currents, respectively,
of the network function GI(s).
Thus

Z.(s) = Vin(s) _ Vin(s)
1 Iin(S) Il(S) - IZ(S)
v, (s)
in
= (5.2)
I, (s) 1 - GI(s)]
Solving for GI(s), we get
Vin(s)
GI(S) =1 - EITEYEI?;T (5.3)
if we make
Rlll(s) = Vin(s) (5.4)
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then

)

GI(s) =1 - EITET (5.5)

where Rl is a constant (resistance).

From the last two sections, we know that once the transfer function
of the network is specified, it can be realized by interconnecting the
digital integrators. Therefore, once we specified the desired driving
point function, Zl(s), then GI(s) can be found. In this way the 1-

port network with the desired Zl(s) can be constructed, as in Fig. 32.

|-PORT NETWORK

Fig. 32 TFEEDBACK CONNECTION USED TO REALIZE THE DRIVING
POINT IMPEDANCE FUNCTION

Example 10: Realize the following driving point impedance function

by using the prescribed technique

52 + s+ 2 Vin(s)

YA (s) = =
T
1 28 + s + 1 in(8)

Solution: First, the transfer function GI(S) has to be found.

Using Eq. (5.5), we have
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2 .
Rl s (1 - 2R1) + s(1 - Rl) + (2 - R

I z,(s) 2 +s+2

1

I,(s) i R I, (s)
I, (s) - O

Let Y(s)
and X(s)

RlIZ(S) [note, here Y(s) 1is not the admittance function ]

V. (s) then we have
in

s + s +2) Y(s) = [s2(1 - 2R)) + s(L - R) + (2 - RDT X(s)

or

(1 -R) (2-R)
<} +-§ +-35>Y (s) = [(1 - 2R) + — L 5 1 ] ¥(s)

] S

Transforming the above expression back to time domain, we have

y(£) = (1 - 2R)) x(t) + Ca - R)) x(t) - y(t)] dt

T ACERSEICERMONE S

or
dy = (1 - 2R)) dx + Ca- R;) x - yldt + [ [(2 - R)) x - 2y ] ae?

The network realized for GI(S) is shown in Fig. 33. By a connec-
tion similar to Fig. 32 the network realization for Zl(s) is as shown
in Fig. 34. The input current to ADC (analog-to-digital converter) has
been assumed to be zero.

The equivalent analog networks realized by both Brune's method and

Bott and Duffin's method are shown in Figs. 35 and 36 [9].
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Note that the method just described needs a controllable current
source at the output; this is not easy to get. An alternative wav of
realizing the driving point impedance function will be shown in the fol-

lowing:

at f[(Z-R‘)f-Zy] dtz

[[t2-R)x-2y]at 4

dt
oy L @R
(2-Rﬂx—2y 2‘*—————-

-

oS (1-2R,)
——Tdf
(1-R)x-y / S5
d[(-R)x-y] (1R, )dx

2
Fig. 33 REALIZATION OF G(s) = [sz(l-ZRl) + s(l—Rl) + (2-—Rl):l/(s +s+2)
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on L 10 U 3 o

ADC

Fig.33

Gis)

dy

y
REGISTER

(-]
Yt 3R, J‘
X
o l"REGISTER

DAC

Fig. 34 REALTIZATION OF Zl(s) = (32+s+2)/(252+s+1)

O—— ET o— M2
L ] ®
2 |
Z‘—" 2§ ﬁ Z|—>
/72 172
o T o- I

2 2
Fig. 35 BRUNE NETWORK REALIZATION OF Zl(s) = (s +s+2)/(2s +s+1)
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Fig. 36 BOTT AND DUFFIN'S REALTIZATION OF Zl(s) = (sz+s+2)/(252+s+1)

Changing the configuration of Fig. 32 to Fig. 37, let us define the vol-

tage transfer function as

(5.6)

and assume that the output voltage has a very small output impedance such

that

v, (s) - Vin(s)

)

IZ(S) = (5.7)

From Eq. (5.5)

(5.5)
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then

6 (e TR |V ®

I,(s) i [VZ(S) - Vin(S)] i El v, (s) .
Il(s) Vin(s)/Rl R2 in

Ry
E; [Gv(s) - 1]

=1 - (5.8)

Solving for GV(s), we obtain

) %
GV(S) =T + 1 - 7 (s (5.9)

1 1

With Zl(s) specified, Gv(s) can be found, and Zl(s) can be realized

without difficulty by interconnecting the digital integrators.

S _I-PORT NETWORK
", —1|

%

pLte

Iz(s) I

{ I(s)

Fig. 37 EQUIVALENT OF FIG. 32
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With the method described, the network of Example 10 can also be

realized as follows:

R2 R2(2s2 + s+ 1)
G(s)=-§—+l— >
v 1 s + s+ 2
B R Rps + %y V28 (e
_1+_§——2R2+2 =V()=X()
1 s  +s + 2 in S s
y(£) =y, (£) + y,()
where
)
yl(t) =l1 + 5 - 2R2 x(t)
1
yz(t) = the solution of

dy'rz(t) = R, dx(t) + R, x(t) dt - dy,(t) - 2y,(t) dt .

The realized network is shown in Fig. 38,

2. Driving Point Admittance Function Realization

The driving point admittance function Yl(s) of a network is de-
fined as the ratio of I, (s) to V, (s), where I, (s) and V. (s)
in in in in
are, respectively, the input current and input voltage in Laplace trans-

form form; namely,

(5.10)

In contrast to the last section, consider a l-port network, now using the
voltage feedback rather than the current feedback, since we are assuming

the input as a current controlled source.
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Y dy, Y=Y+ dy,+dy,

-
2 DACTy(t)

i 3] z

xdt

X
l‘ REGISTER

u’( @

|+-;f--2Rz o
!

Fig. 38 ALTERNATE REALIZATION OF Z(s)

Referring to Fig. 38, let us define an internal voltage transfer

function H(s), such that

H(s) = 72e) (5.11)
s) = Vl(s) .
Since Vl(s) = Vin(s) + Vz(s), hence
Iin(S) Iin(S)
W) =TT TV e -V,
in 1 2
Iin(s)
= 53133—'[1 - H(s)]
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or

I, (s)
in

H(s) =1 - VITES_§ITEY

(5.12)

If a fixed resistor, R! has been connected across terminals 1-2',

1
then
I. (s)
in 1
—-— = =7 (5.13)
Vl(s) Rl
hence,
H(s) = 1 - _'——Yl_-(_s-)_ (5.14)
R1 M1

This is similar to Eq. (5.5). From the method used in the last sec-
tion, we can easily realize the transfer function H(s) by using digital
integrators. With H(s) realized, the desired driving point admittance

Yl(s) can be obtained by connecting H(s), as shown in Fig. 39.

__I-PORT NETWORK __

gm(s) H(s) —I
Vin‘(:_)_ — Y R! V2

.| 3 |

Y(s) l T2" l

| |

L ]

Fig. 39 FEEDBACK CONNECTION USED TO REALIZE
DRIVING POINT ADMITTANCE FUNCTION
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Example 11: Realize the following driving point admittance function

s +s+2 L

28" +s +1 Vin(s)

Yl(s) =

Solution: First, find the transfer function, H(s), corresponding

to the given Yl(s):

®] - 2)s% + (R - Ds + (28] - 1)

1
H(s) = 1 - — =
Ry ¥y (8 Ri(sz + s+ 2)
) Vz(s)
- v, (s)
Let Vz(s) = Y(s) and Vl(s) = X(s), then

Ri(s2 + s+ 2) Y(s) = ERi - 2)s2 + (Ri - s + (ZRi - l)] X(s)

or

1 2 2 1 1 1 1
1+=+=)Y@E) = |{1-F)+ 1 -37)S+ (2 -%) | x(s)
R RN (G N L M O

Transforming back to the time domain, we have

2
y(t) = x(t) +fK -;—i> x(t) - y(t)] dt +f[< - 11{—1> x(t) - zy(t)] dt
or
1 1 2
dy = dx + [(} - §;> X - y] dt +./.[<? - ﬁf) X - ZyJ dt
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The realized network of H(s) and Yl(s) are given in Fig. 40 and

Fig. 41, respectively.

3“7

N dt[(Z-I/R:)x-Zy]dt dx
(2-1/R)x-2 _/_ dy
i d[(2-1/R)x~y]dt 2

dt

A [t-1/R )x-y) dt
(-17R)x-y / s 2
dti-1/R)x-y)] (1-1/R})dx

Fig. 40 REALIZATION OF H(s) = I:(RZ'L_Z)SZ + (Ri—l)s + (ZRi—l):l/[Ri(sz+s+2)]

1. (1)
os —apc— %! r'{' dx Fig.40 9y [F REGISTER DAC

H(s)

Violt) R

URAY

x REGISTER

2
Fig. 41 REALIZATION OF Y (s) = (624542 / (252 +s+1)
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An interesting result can be drawn from the previous two examples
(Ex. 10 and Ex. 11). It is seen that if we normalized the values of Rl
and R! or make R, = R! =1 ohm, then G(s) 1is exactly the same as

H(s). . Therefore, ihe sime function can be realized as either an admit-
tance or an impedance function, depending on how the integrators are
hooked up.

The following two examples show the realization of a single inductor
and single capacitor by using digital building blocks.

Example 12: Realize Zl(s) = sL. by using the above techniques.

Solution: By using Eq. (5.5)

R -
ey o1 - L El i sL - R i I,(s) ) RiI,(s)
Zl(s) sL sL Il(s) Vin(s)

Let

Y(s) = Rllz(s) , X(s) = Vin(S)

then

. Rl
Y(s) =< - —s—f> X(s)

In the time domain, we have

R
y(t) = x(t) ~ i—l-fx(t) dt

or

!
dy = dx - % dt

The network of G(s) can be realized as in Fig. 42, and the single

inductor of value L can be realized as in Fig. 43.
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dt
: Rlxd'/L o) (
- dy y(t)
Rx/L / > y REGISTER SUTPUT

i

x(t)
INPUT 5 dx o
=)

L- X REGISTER f»

Fig. 42 REALIZATION OF G(s) = (sL - Rl)/sL

l

: R xdt/L |

1. (s) | o I

Viols) _ 3 = l -y Sy |

o |

. 3 ;
2 )

Lin® ]!, AD x(t) © I/R C °|

wor-| 31 o |

o—— |

Z(s) | l

Fig. 43 REALIZATION OF A SINGLE INDUCTOR, Zl(s) = sL
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Note that if x(t) 1is a sinusoidal function whose time integral

stays finite all the time, then the output y(t)

y(t) = x(t) - ?l}-c— fx(t) dt

will remain finite. Otherwise, the integral grows increasingly larger

and eventually it will cause overflow in the y(t) register, which in
turn will not perform the correct operation. From another point of view,
the current y(t)/Rl, flowing through the inductor will increase inde-

finitely after a step voltage =x(t) = constant is applied.

1 (0) =%fv(t) dt

Example 13: Realize a single capacitor Yl(s) = sC.
Solution: By using Eq. (5.14)

R!'sC -1 V_(s)
H(s) =1 - & Yl ) lR' sC_ vz(s) = ;{(ES;
11 1 1 s

Y(s) = <l - q%> X(s)

in the time domain we have

y(t) = x(t) - —Tl— x(t) dt or dy = dx - ,1 x dt
R1 C Rl C

The network of H(s) can be realized as shown in Fig. 44. With
H(s) realized, the single capacitor C
in Fig. 45.

can be easily obtained as shown

71 SEL-67-019



dy y(t)
-x/R'C : ‘ REG
< (R, 2 Y REGISTERfSGTRuT

x(t)
INPUT T dz

x REGISTER

Fig. 44 REALIZATION OF H(s) = (sRi—l)/sR]'_C = Y(s)/X(s)

————————
} REGIS{TER | SaRC] 2 |-
=C p | 3 f—at
| f
| [:-x/R; c
————— G
3 &
e

x REGISTER ] L y REGISTER |—DAC———o0—

x(t)

Fig. 45 REALIZATION OF A SINGLE CAPACITOR
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L3

From Example 12 we know that with the length of the registers suf-
ficiently long, we could theoretically construct an almost ideal inductor.
In other words, a circuit with a very high-Q can be obtained. From the
realization techniques presented in this paper it is obvious that any
driving point immittance function with negative values or with poles in
the right half of the complex frequency plane can be realized without
extra effort.

Example 14: Realize the following immittance functions

a. Zl(s) = -s (negative inductor, L = -1)
b. Yl(s) = -1 (tunnel diode, C =1, R = -1)
Solution:

a. Using Eq. (5.9)

R R R R vV, (s)
2 2 2 2 _ 2 _ Y(s)
Go(8) =g+ 1-—5= <1+R—>+s—‘ V. (5~ X(s)
1 1 in
Y(S) = (1 +E§> X(S) +R_2_)i(—5_)_
Rl s

Transforming back to the time domain, we have

)
y&)=Q+§—x&)+%1}u)a
1

Ry
1+ —)dx + R, x dt
R1 2

The network with the transfer function Gv(s) can be realized easily, as

or

dy

shown in Fig. 46. With Gv(s) realized, the negative inductor can be

realized, as shown in Fig. 47.
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cdx

y{t) OUTPUT

dx

INPUT

Fig. 46 REALIZATION OF Gv(s) = (1+ R2/Rl) + R2/s

Lintt) x(1) dx
o ADC T

(N §Rl
- Ir—
Z(s)=-s

Fig.46
Gv(’)

y(t)

DAC

Fig. 47 REALIZATION OF Zl(s) = -85
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b. Using Eq. (5.14)

1 V2(8)  y(ey

H(s) =1 - RG-D 7, X

then

e — R'
Rls Rl

1 1
Rjs - Ry - 1 l_;<l+R_ﬁ
Y(s) = X(s) X(s)

In the time domain, we have

y(t) = x(t) +f[y(t) - <l +-1R—,—> x(t)] dt
1
1
dy = dx + [y - <1 +F>xj| dt
1

or

The network with H(s) = 1—1/[R£(s-l)] can be realized, as can the

tunnel diode (see Figs. 48 and 49).

-—dt .
N y=U=1/R Ixdt dy | y(t)
' z y_REGISTER [mrmsrr™=
y-(I-I/R,)x/ 4 OUTPUT

dy

z

-1-1/R
INPGT = 5

x REGISTER

Fig. 48 NETWORK OF H(s) = 1-1/[R;(s-1)]
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I (s)
Viols)

|—> -1 Y REGISTER
dt
Y (s)=s-i 2
y-{~1/R))x
dy
z
+/1
wés)°Jn ADC 5 L
e
y(s)

{y REG|STERI'"

y(t)
OUTPUT

DAC
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Fig. 49 NETWORK OF Y, (s) = s-1
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Appendix A

In the frequency domain approximation, the principal problem is to
find a rational function G(s) whose magnitude |G(jw)| approximates
the ideal low-pass characteristic, as in Fig. A-l, according to a pre-

determined error criterion. Two approximations are discussed.

1. The Maximally Flat Low-Pass Filter Approximation

1

|6 (3w) | =T=ﬁ
+ w

. th .
is known as the n ~order Butterworth or maximally flat low-pass response,

and is an approximation of the ideal response of Fig. A-1.

[Gtiw) |

| /

=PASS BAND*1=-STOP BAND—

CUTOFF

% i @

Fig. A-1 IDEAL LOW-PASS FILTER CHARACTERISTIC
The poles of this function are defined by the equation

n
1+ (=s2) =0

Then the pole locations are

5. = S 2k-1T 0 even
T S n_ 2
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2
Sk = exp (] m 2) n odd

or

wn
1

exp (JZLt—E—'——l%> k=1, 2,3, ..., 20 .

The poles so defined are located on a unit circle in the s-plane and
are symmetrical with respect to both the real and imaginary axes. To form
the function G(s) from the given |G(jw)‘2, we reject the right-half

plane poles, and from the left-half plane poles form the all-pole function,

1

2
1+ als + a2s + ... + ans

G(s) = -

The coefficients of the denominator polynomials of G(s), sometimes

called Butterworth polynomials are tabulated in Table A-1.

Table A-1
COEFFICIENTS OF THE DENOMINATOR POLYNOMIALS OF G(s)

n a; a, ag a, ag ag
1 1.0000

2 1.4142 1.0000

3 2.0000 2.0000 1.0000

4 2,6131 3.4142 2.6131 1.0000

5 3.2361 5.2361 5.2361 3.2361 1.0000

6 3.8637 7.4641 9.1416 7.4641 3.8637 1.0000

2. Chebyshev or Equal-Ripple Approximation

The squared magnitude form

1
1+ Ez an(w)

e | =
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is an equal-ripple approximation of Fig. A-1, where Cn(w) 1is the
nth—order Chebyshev polynomial and ¢ < 1 1is a real constant, Chebyshev

polynomials are defined in terms of the real variable =z by the equation

Cn(z) = cos(n cos_l z)
Further define 2z = cos w, then
Cn(w) = cos nw
and a recursion formula can be found as

Cn+1(z)

ZzCn(z) - Cn—l(z)

with

Co(z) 1, Cl(z) = z.

The poles of this equal-ripple form of response can be found as

Sk = Ok + ka

where
k-1
= +gi in —= —
Ok tsinh a sin a 2
W, = cosh a cos 2k - 1 ; 1 —; k=1,2,3,...,2n

1 sinh_l-l
n €

(')
L]

Again the right-half plane poles are rejected in synthesis procedures.
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Appendix B

SIMULATION OF SINUSOIDAL RESPONSE OF THE TRANSFER FUNCTION G(s) = 1/(s+l)

The program has been written in extended ALGOL. It has been run on

B5500 machine at Stanford University.

BEGIN

REAL Z,YTRUE,X,XX,XXX,YAPPROX;
INTEGER M,N,P,XREG, Y1REG,DX,DY,DYY,YREG,RREG,T,DT,TFINAL;
READ (M,N,TFINAL);
P<2*N;
YREG+<Y1REG<XREG<RREG+0;

FOR T<«l STEP 1 UNTIL TFINAL DO
BEGIN

Z<T/P;

X< (P-1)xSIN(Z);

XX+X-XREG; XXX<ENTIER(ABS(XX));
IF XX<0 THEN DX«+-XXX ELSE DX<XXX;

XREG+ XREG+DX;

IF ABS (RREG)>M AND RREG>0 THEN

BEGIN DY<«l; RREG+RREG-M

END ELSE IF ABS (RREG) >M AND RREG<O THEN
BEGIN DY«-1; RREG<RREGHM
END ELSE DY<«O0;

DYY<DX-DY;

Y1REG+Y1REGH+DYY;

RREGRREG+Y1REG;
YREG+YREGHDY;
YTRUE«+PX0. 5% (EXP (-Z)+SIN(Z)-C0S(Z)) ;

WRITE (T,XREG,Y1REG,RREG,YREG,YTRUE);

END

END
DATA CARD
256.0 8.0 1500
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Appendix C
UNIT STEP RESPONSE OF G(s) = 1/(s+1)

BEGIN

END,

SIMULATION ON B5500 MACHINE

REAL M,N,P,Z1,Z2,YYREG,YREG,DY,DYY,X1,X2,DX,DELX,RREG,T, TFINAL;

READ (M,N,TFINAL);
P<2*N; YREG+YYREG+RREG+0;
FOR T«l STEP 1 UNTIL TFINAL DO
BEGIN

Z1«T/P; X1« (P-1);
IF T<1 THEN
BEGIN DX<(P-1)
END ELSE DX<0;
IF RREG>M THEN
BEGIN DY«l; RREG“RREG-M
END ELSE DY<O0;
DYY«DX - DY; YYREG+YYREGHDYY;
RREG-RREG+YYREG; YREG<YREGHDY;
WRITE (T,YREG) '
END
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Appendix D

The Analog to Digital Increment Converter (ADIC) is a device which
converts the difference of two analog quantities to digital form. In
particular, if an analog signal is applied to the input of the ADIC, the
difference or the increment of the analog quantities measured at two
consecutive bit times are converted to digital form. One implementation

is shown in Fig. D-1 where the operational amplifiers are employed to get

x(ti)

DIGITAL
o x() -x(ti.)) INCREMENTS
ANALOG

INPUT
AT t=t;

-x(1j) | 1-BIT TIME
DELAY [-x(%_)

Fig. D-1. ONE IMPLEMENTATION OF ADIC

the difference of the signals at two consecutive bit times. A difference
amplifier can be used to replace the two operational amplifiers if it is
available. The gain of the amplifiers does not have to be unity. When
necessary, gain adjustments can be made to fit the ADC input levels.

Similarly, another possible implementation is shown in Fig. D-2
where the analog signal is converted to digital form first, then sub-
tracted from the previous digital quantity by a digital adder-subtractor.
The difference output is the digital increment.

Among the two implementations, the first one, (Fig. D-1), is pre-
ferred and a few advantages of it can be mentioned. The input level to

the ADC is limited therefore fewer comparators are needed in the ADC and
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ANALOG

INPUT

o——— ADC

Fig. D-2,

more accuracy can be achieved.

DIGITAL
DIGITAL INCREMENTS
ADDER - -
SUBTRACTOR

DELAY ACCUMULATOR

ANOTHER IMPLEMENTATION OF ADIC

The conversion time of this ADIC is much

less than that of the second implementation because only increments are

transferred rather than the full words.

Besides, the difference of the

two analog quantities can be obtained immediately from the difference

amplifier whereas the digital subtraction takes time.
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